Interest in the study of concentrated columnar vortices has been largely motivated by efforts to determine the structure, mechanism of formation, and energy source of such natural phenomena as tornadoes $[1,2]$ and "dust devils" [1, 3-5]. tornado-like vorticesare produced. experimentally by various techniques (e.g., with the presence of a sink in a rotating fluid [6-10]). In this setting, the problem of the energy sources of real vortices is sidestepped, and only the flow structure is investigated. Vortices have been generated [11-13] by a mechanism that is possibly closer to reality. The source of vorticity concentration in this case is an unstable stratification of a water-air mixture [11] or air heated from below [12, 13]. Theoretical models based on unstable stratification have been devised [12, 14], in one case with the assumption that only a thin layer near the bottom surface [12] and, in the other, that the entire atmosphere [14] is unstable. Qualitatively different results are obtained in either case. For example, if the vortex radius is taken to be the distance at which the rotational velocity attains a maximum, then it is inferred from [12] that its value increases with height $z$ along the vortex, whereas [14] implies that it does not depend on $z$.

1. The apparatus used to generate andinvestigate tornado-1ike vorticescomprises a cylit ${ }^{1-}$ drical vessel of heat-resistant glass. The cylinder has a height of 130 mm and a diamete of 100 mm . It is mounted vertically, filled with water, and heated from below. The liquid is set in motion by a rotating transparent disk mounted near the top of the open part of the cylinder. The disk has a diameter of 90 mm . The experimentally generated flow has axial symmetry. We introduce a coordinate system ( $r, \varphi, z$ ), where $r$ is the radius and $\varphi$ is the azimuth angle. The $z$ axis coincides with the flow symmetry axis. We denote by $u, v, w$ the velocity components corresponding to the coordinates $r, \varphi, z$. The flow velocities are measured by the hydrogen-bubble method [15]. Copper wires with a diameter of $50 \mathrm{\mu m}$ are used for this purpose. The following functions are determined: $v(r)$ and $w(r)$ for fixed values of $z ; v(z)$ for fixed values of $r$. The functions $v(r)$ and $w(r)$ are determined from photographs of the line of bubbles generated by a horizontal wire. The wire is stretched across the diameter of the cylinder at heights of 1 and 3 cm above the bottom. In the first case the bubbles are photographed from topside at an angle of $10^{\circ}$ relative to the z axis, and in the second case from the side along the normal to the wire. The function $v(z)$ is determined by photographing the bubbles from a vertical wire. The latter is set at a distance of 20 and 30 mm from the center of the cylinder. The bubbles are photographed from the side along the radius through the wire. In every case the bubble line is photographed on film with a certain delay time $\tau$ after bubble formation. The photographs are taken for different values of the disk rotation frequency $f$ and the water depth 2 in the cylinder.

In the absence of heating, the liquid outside thin boundary layers at the solid surfaces rotates almost as a rigid body. The frequency of rotation is roughly equal to 0.2 f . Maxworthy [9] has obtained a similar result. With heating at the center of the cylinder, a vertical vortex is formed. Figure 1 gives a photograph of this vortex, which is visualized by the addition of dye in the lower boundary layer ( $\mathrm{f}=0.9 \mathrm{rps}$ ), Fig. 2 represents a typical photograph of the bubbles from a vertical wire ( $\tau=0.53 \mathrm{sec}, \mathrm{f}=0.9 \mathrm{rps}$ ), and Fig. 3 represents topside photographs of the bubble line from a horizontal wire. The upper frame corresponds to $f=0.9 \mathrm{rps}$, and the lower frame to $\mathrm{f}=1.54 \mathrm{rps}$. In both cases $\mathrm{Z}=12 \mathrm{~cm}$ and $\tau=0.11 \mathrm{sec}$. Figure 4 represents photographs of a bubble line, illustrating the function $w(r)$ at a height of $1 \mathrm{~cm}(\tau=0.53 \mathrm{sec}, f=0.9 \mathrm{rps})$.

Making use of the experimental data, we note some important qualitative features of the flow. Immediately after exit from the boundary layer, a vortex explosion takes place [9] (Fig. 1). We infer from the data of Fig. 2 that in the first approximation $v$ does not de-

[^0]

Fig. 1


Fig. 2

pend on the height z. According To Fig. 3, it is possible within the vortex to discern a core, in which the rotation is close to that of a rigid body, while outside the core it is nearly potential. Figure 3 and Table 1 illustrate the effect observed in the experiment. With an increase in $f(f \geqslant 0.9 \mathrm{rps}, Z=12 \mathrm{~cm})$ or with a decrease in $Z(f=0.9 \mathrm{rps}, Z \leqslant 12$ cm ) the radius of the core increases sharply, but with an increase in $f(f \leqslant 0.9 \mathrm{rps}, \mathcal{Z}=12$ cm ), it remains practically unchanged. In Table $1, r_{0}$ is the radius of the core, and $A_{\infty}$ is the value of vr at $r=r_{0}$. According to Fig. 4, the vertical-velocity profile is close to a step function. The radius $r_{*}$ of the updraft zone is approximately equal to the radius of the core. The flow inside the core is directed upward.

Along with the determination of the velocity field, we have measured the temperature as well. A mercury thermometer is used for this purpose. The measurements indicate that the temperature in the core is $1-3^{\circ} \mathrm{C}$ higher than outside the core. In the region exterior to the core we observe roughly a $1^{\circ} \mathrm{C}$ increase in the temperature as the thermometer is lowered from a height of 10 cm to 1 cm . Also, the temperature of the water in the cylinder increases approximately at the rate of $1^{\circ} \mathrm{C}$ every 30 sec . Measurements in the core and at various heights show that the characteristic temperature is $1^{\circ} \mathrm{C}$. The characteristic time of the process, in turn, reckoned according to the frequency of rotation of the core or the ascension time of the liquid in the core, amounts to a few seconds. Thus, the variation of the water temperature during the characteristic time of the process is small in comparison with the characteristic temperature. We note that in all the experiments the flow was laminar and the heating conditions were constant.
2. On the basis of the experimental data we construct a theoretical model of the observed effect. The principal objective here is to obtain expressions for the radius of the core and to determine its compaction effect. A schematic diagram of the flow field in the cylinder in an axial cross section is given in Fig. 5. Region I is the boundary layer,

TABLE 1

| $f, \mathrm{rps}$ | 0,9 | 1,2 | 1,54 | 0,9 |
| :--- | :--- | :--- | :--- | :--- |
| $l, \mathrm{~cm}$ | 12 | 12 | 12 | 8,5 |
| $\mathrm{~A}_{\infty}, \mathrm{cm}^{2} / \mathrm{sec}$ | 1,3 | 2,55 | 5,3 | 1,9 |
| $r_{0}, \mathrm{~cm}$ | 0,3 | 0,55 | 1,1 | 0,55 |
| $\mathrm{~A}_{\infty} / \mathrm{r}_{0} l, \mathrm{sec}^{-1}$ | 0,36 | 0,39 | 0,4 | 0,4 |



Fig. 5
in region II the flow from the boundary layer emerges upward in the form of a narrow twisted stream, vortex explosion takes place in region III, the vortex core is formed in region IV, and in region $V$ the flow is close to potential. Let us examine regions $I V$ and $V$. We place the origin at point 0 . We state the following main assumptions:
a) The flow is laminar, steady, and cylindrically symmetric.
b) The Boussinesq approximation holds.
c) The azimuthal component of the velocity is independent of $z$ in the first approximation, so that

$$
\begin{equation*}
v r=A(r)+\varepsilon A_{1}(r, z) \tag{2.1}
\end{equation*}
$$

where $\varepsilon \ll$ and $A \sim A_{1}$.
d) Since $r_{0} \approx r_{*}$, we assume that $r_{0}=r_{*}$.
e) The region $\nabla(F i g, 5)$ extends to infinity in the radial direction.
f) In each cross section $z=$ const the axial velocity profile $w(r)$ and the quantity $\theta(r)=T-T_{*}$, where $T$ is the temperature and $T_{*}$ is the temperature at an infinite distance from the vortex axis, can be approximated by step functions in $r$ :

$$
w(r)=\left\{\begin{array}{cc}
W(z), & \theta(r)=\left\{\begin{array}{cc}
\Theta(z), & 0 \leqslant r \leqslant r_{0} \\
0, & r>r_{0}
\end{array}, .\right. \tag{2.2}
\end{array}\right.
$$

(we note that if in the approximation of $\theta$ we replace $r_{0}$ by $r_{2} \neq r_{0}$, the qualitative results remain unchanged, except that certain coefficients in the equations acquire factors of the type $r_{1}^{2} / r_{0}^{2}$ of order unity).
g) Inasmuch as $r_{0} \ll l$ and the variations of the velocity with height and along the radius of the core are of the same order, we invoke the approximation of an axial boundary layer.

We now derive the system of equations. We use assumptions a), b), e), g), an equation of state in the form $\rho=\rho_{0}\left[1-\alpha\left(T-T_{0}\right)\right]$, and the relations $T_{*}=T_{*}(z), P_{*}=P_{*}(z)$. Here $\alpha$ is the specific coefficient of thermal expansion, $P_{*}$ is the pressure far from the vortex axis, and $\rho_{0}, T_{0}$ are the density and temperature at $z=0, r \rightarrow \infty$. As a result, the equations of continuity, motion, and energy assume the following form in a cylindrical coordinate system:

$$
\begin{gather*}
\partial Q / \partial r=\partial(w r) / \partial z ;  \tag{2.3}\\
u \frac{\partial(v r)}{\partial r}+w \frac{\partial(u r)}{\partial z}=v r \frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial(v r)}{\partial r}\right),  \tag{2.4}\\
u \frac{\partial u}{\partial r}+w \frac{\partial u}{\partial z}-\frac{\partial^{2}}{r}=-\frac{\partial p}{\partial r}+v \frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial(u r)}{\partial r}\right), \\
-\frac{\partial(u Q)}{\partial r}+\frac{\partial\left(r w^{2}\right)}{\partial \bar{z}}=-r \frac{\partial p}{\partial z}+\alpha \sigma r \theta+v \frac{\partial}{\partial r}\left(r \frac{\partial w}{\partial r}\right), \\
-\frac{\partial(\theta Q)}{\partial r}+\frac{\partial(r u \theta)}{\hat{\partial} z}=\beta r u+\varkappa \frac{\partial}{\partial r}\left(r \frac{\partial \theta}{\partial r}\right),
\end{gather*}
$$

where $Q=-u r ; \nu$, kinematic viscosity of the liquid; $x$, thermal diffusivity; $g$, acceleration of gravity; $\beta_{=}=-\partial T * / \partial z ; p=\left(P-P_{*}\right) / \rho o ;$ and $P$, pressure. From (2.3) and the first expression (2.4) we obtain an expression for the radius of the core. We determine ro from the maximum of the azimuthal velocity. Then, on the basis of $c$ ), $r_{0}$ is independent of $z$ in the first approximation. To do so, we assess the possibility of neglecting the second term on its left-hand side. We assume for this assessment that the rotation inside the core is of the rigid-body kind. Estimating $u$ from the equation of continuity, we obtain

$$
\begin{align*}
& u \partial(v r) / \partial r \sim \Delta W \Gamma_{0} r^{2} /\left(r_{0}^{2} l\right),  \tag{2.5}\\
& w \partial(v r) / \partial z \sim W \Delta \Gamma_{0} r^{2} /\left(r_{0}^{2} l\right),
\end{align*}
$$

where $\Gamma_{0}$ is the value of ( $v r$ ) at the boundary of the core and $\Delta W, \Delta \Gamma_{0}$ are the variations of the quantities over the height 7 . According to (2.5), it is impossible to neglect the given term if $\Delta W \Gamma_{0} \gg W \Delta \Gamma_{0}$. The latter statement is true because, according to (2.1), $\Gamma_{0} \gg \Delta \Gamma_{0}$ and, as will be shown presently, $\Delta W \sim W$.

We reject the indicated term and make use of assumption $c$ ). We obtain the first-approximation equation

$$
\begin{equation*}
\frac{d^{2} A}{d \eta^{2}}+\frac{Q}{2 v \eta} \frac{d A}{d \eta}=0, \quad \eta=r^{2} / r_{0}^{2} \tag{2.6}
\end{equation*}
$$

We apply the boundary conditions $A(0)=0, A(\infty)=A_{\infty}$. We use Eqs. (2.3) and (2.6) to determine the structure of $Q$, arriving at an expression for $r_{0}$. It follows from (2.6) that $Q=Q(r)$ in the first approximation. Then, according to (2.3), $w$ is a linear function of $z$ :

$$
\begin{equation*}
w \sim z \tag{2.7}
\end{equation*}
$$

Solving (2.3) with regard for (2.2) and (2.7), we obtain

$$
Q=\left\{\begin{array}{lr}
Q_{0} \eta, & 0 \leqslant \eta \leqslant 1  \tag{2.8}\\
Q_{0}=r_{0}^{2} \Delta W /(2 l), & \eta \geqslant 1
\end{array}\right.
$$

By definition, the azimuthal velocity is a maximum at the point ro. We integrate (2.6) with regard for (2.8). We analyze the resulting expression for an extremum of the azimuthal velocity. We deduce as a result that $Q_{0}$ satisfies the equation $\exp \left(Q_{a} /(2 v)\right)-1=Q_{0} / v$. Hence, $Q_{0} \approx 2 v$. We put $Q_{0}=2 v$ in the first approximation. Then from (2,8) we find the required expression for $r_{0}$ :

$$
\begin{equation*}
r_{0}^{2}=4 v l /(\Delta W) \tag{2.9}
\end{equation*}
$$

Consequently, to ascertain the dependence of $r_{0}$ on the parameters of the model we must determine $\Delta W$. We find the latter from the equation of motion for the axial component of the velocity and the energy equation. We solve them, making use of assumptions d) and f). We introduce the dimensionless variables

$$
\begin{equation*}
W_{0}=W / \sqrt{\alpha \beta g} l, \Theta_{0}=\Theta / \beta l, \xi=z / l \tag{2.10}
\end{equation*}
$$

We integrate the equation for $w$ with respect to $r$ from 0 to $r_{0}$ and with respect to $z$ from 0 to $Z$ and integrate the energy equation with respect to $r$ from 0 to $r_{0}$. We substitute (2.10) into the resulting expressions and interpret $\beta$ as its height-average value.

We obtain

$$
\begin{gather*}
W_{0}^{2}(1)-W_{0}^{2}(0)=-\Delta p_{0}+\int_{0}^{1} \Theta_{0} d \xi+\frac{2 v}{r_{0} \alpha \beta l l} \int_{0}^{1}\left(\frac{\partial w}{\partial r}\right)_{0} d \xi  \tag{2.11}\\
\frac{d\left(W_{0} \Theta_{0}\right)}{d \xi}=W_{0}+\frac{2 \chi}{r_{0} \beta V \overline{\alpha \beta g} l}\left(\frac{\partial \theta}{\partial r}\right)_{0} \\
\Delta p_{0}=\frac{2}{r_{0}^{2} \alpha \beta g l} \int_{0}^{r_{0}}(p(1)-p(0)) r d r \tag{2.12}
\end{gather*}
$$

The subscript 0 signifies that the derivatives are evaluated at $r=r_{0}$. We obtain order-ofmagnitude estimates of the derivatives

$$
\begin{equation*}
(\partial w / \partial r)_{0} \approx-W / r_{0},(\partial \theta / \partial r)_{0} \approx-\Theta / r_{0} \tag{2.13}
\end{equation*}
$$

On the basis of (2.7) we seek a solution of (2.11) in the form of linear functions with respect to $\xi$ :

$$
\begin{equation*}
W_{0}=a_{1} \xi+b_{1}, \Theta_{0}=a_{2} \xi+b_{2} \tag{2.14}
\end{equation*}
$$

The quantities $a_{1}, b_{1}, a_{2}, b_{2}$ do not depend on $\xi$. Their physical significance follows directly from (2.10) and (2.14). We substitute (2.10) and (2.14) into (2.9). We obtain

$$
\begin{equation*}
r_{0}^{2}=4 v / a_{1} \sqrt{\alpha \beta g} \tag{2.15}
\end{equation*}
$$

Substituting (2.13) and (2.14) into (2.11) and replacing $r_{0}^{2}$ by its value (2.15), we have

$$
\begin{gathered}
5 a_{1}^{2} / 4+5 a_{1} b_{1} / 2=-\Delta p_{0}+a_{2} / 2+b_{2} \\
a_{2}=\frac{1}{2}\left(1+\frac{1}{4 \operatorname{Pr}}\right)^{-1}, \quad b_{1}=2 a_{1} b_{2}\left(1+\frac{1}{4 \operatorname{Pr}}\right)
\end{gathered}
$$

where $\operatorname{Pr}=v / x$. Since $4 \operatorname{Pr} \gg 1$, we obtain in the first approximation

$$
\begin{equation*}
a_{1}=\sqrt{\frac{1}{5}\left(1-\frac{4 \Delta p_{0}}{1+4 b_{2}}\right)} \tag{2.16}
\end{equation*}
$$

Thus, for solutions of the form (2.14) only one out of the four variables $a_{1}, b_{1}, a_{2}$, $b_{2}$ is specified independently, while the others are determined by solving the system (2.11). It is physically clear that $b_{2}$ or $b_{2}$, i.e., the value of the velocity or temperature at the lower boundary (for $\xi=0$ ) can be specified. However, it is difficult to assign $b_{1}$, because in the vortex explosion process there can occur an unmonitorable entrainment of liquid from the exterior region into the core or, conversely, expulsion from the core [9]. We therefore adopt $b_{2}$ as the free parameter. We infer from (2.16) and (2.15) that to find the value of $r_{0}$ it is necessary to specify $b_{2}$ and $\beta$ and to determine $\Delta p_{0}$. The heating conditions were
constant (a dn fixed) in the present experiment, and so it may be assumed that $b_{2}$ and $\beta$ are approximately constant. Then the variations of $r_{0}$ are completely determined by the variations of $\Delta \mathrm{p}$ 。.

We determine $\Delta \mathrm{p}_{\mathrm{o}}$ and, in order to explain the core compaction effect, analyze the dependence of $\Delta \mathrm{p}$ o on $\mathrm{A}_{\infty}$ and 2 . The equation of motion for the radial component of the velocity in the first approximation has the form

$$
\begin{equation*}
\partial p / \partial r=A^{2} / r^{3} . \tag{2.17}
\end{equation*}
$$

Assuming that the rotation is of the rigid-body type inside the core and is potential outside it, by means of (2.17) we obtain

$$
\begin{equation*}
\int_{0}^{\tau_{0}} p(1) r d r=-3 A_{\infty}^{2} / 8 . \tag{2.18}
\end{equation*}
$$

For the determination of $\Delta p_{0}$ it is required to find the difference between (2.18) and the integral

$$
\int_{0}^{\sigma_{0}} p(0) r d r
$$

We determine the latter, taking into account the conditions at the lower boundary, namely the vortex explosion effect. We consider the region AA'B'B (Fig. 5). We denote by $r_{1}$ the radius of the vortex before explosion, and by $u_{1}$ the average velocity in the cross section CC'. We write the integral law of conservation of the axial component of the momentum for AA'B'B:

$$
\begin{equation*}
\int_{0}^{r_{0}} p(0) r d r=-\frac{3}{8} A_{\infty}^{2}-\frac{A_{\infty}^{2}}{2} \ln \frac{r_{0}}{r_{1}}+\frac{u_{1}^{2} r_{1}^{2}}{2} \tag{2.19}
\end{equation*}
$$

The following assumptions are basic to the derivation of (2.19). Outside the region CDEAA' $E^{\prime} D^{\prime} C^{\prime}$ the liquid has a negligibly small vertical velocity. The segment $C D$ is sufficiently short to permit neglect of friction and the buoyant force acting on the segment. Inside CC' the rotation is of the rigid-body type, and outside the segment it is potential. Equation (2.17) is valid in the region $\mathrm{BEE}^{\prime} \mathrm{B}^{\prime}$ as well. In addition, on the basis of the experimental data, in (2.19) we reject terms corresponding to the momentum flux in the cross section $A A^{\prime}$ as well as the buoyant force and the friction force acting on $A A^{\prime} E^{\prime} E$. To estimate them we use tabulated data, along with the quantities $W(0)=1.6 \mathrm{~cm} / \mathrm{sec}$ and $A E=1 \mathrm{~cm}$. We obtain an expression for $u_{1}^{2} r_{1}^{2}$. The quantity $u_{1} r_{1}^{2}$ is equal to the mass flux in the boundary. layer, divided by $\pi$. For laminar flow Rott and Lewellen [16]give the estimate $u_{1} r_{1}^{2} \sim\left(\nu A_{\infty}\right)^{1 / 2}$. $R$, where $R$ is the order of the radius of the cylinder. It has been shown [17] that the diameter of the vortex before explosion is equal in order of magnitude to the boundary-1ayer thickness $\delta$. This fact has also been noted in [9]. According to [16], $\delta \sim\left(v / A_{\infty}\right)^{172} R$. Then, $u_{1}^{2} r_{1}^{2}=k A_{\infty}^{2}$, where $k$ is a certain constant coefficient. Using the latter expression, we substitute (2.18) and (2.19) into (2.12). We obtain

$$
\begin{equation*}
\Delta p_{0}=\frac{A_{\infty}^{2}}{\alpha \beta g l^{2} r_{0}^{2}}\left(\ln \frac{r_{0}}{r_{1}}-k\right) . \tag{2.20}
\end{equation*}
$$

We show that if the expression in the parentheses is positive, then $r_{0}$ will be an increasing function of $A_{\text {cow }}$ and a decreasing function of 2 . We assume the opposite. Then $\Delta p$ o increases with increasing $A_{\infty}$ or decreasing 2. The latter is true, since according to experiment, $r_{0} / r_{1}>10$, and, according to [16], $r_{1}$ is a decreasing function of $A_{\infty}$. The growth of $\Delta p_{0}$ causes $r_{0}$ to increase, contradicting the original assumption.

We substitute (2.20) and (2.16) into (2.15). We solve the resulting expression for $r_{0}^{2}$. We find

$$
\begin{equation*}
r_{0}^{2}=\frac{4 \sqrt{5} v}{\sqrt{\alpha \beta g}}\left(\sqrt{c^{2}+1}+c\right) \tag{2.21}
\end{equation*}
$$

where

$$
c=\frac{\left(\ln \left(r_{n} / r_{1}\right)-l\right) A_{\infty}^{2}}{2 \sqrt{5}\left(1+4 b_{2}\right) \sqrt{\alpha \beta g} l^{2} v} .
$$

Substituting (2.21) for (2.15), we get

$$
\begin{equation*}
a_{1}=\frac{1}{\sqrt{5}\left(\sqrt{e^{2}+1}+c\right)} \tag{2,22}
\end{equation*}
$$

We can use $(2.10),(2.14)$, and $(2.22)$ to determine $W(0)$ and $\Delta W$.
We have thus derived expressions for estimates of the vartex parameters. It follows from their derivation that, according to the model, the boundary layer at the bottom surface exerts an appreciable influence on the external flow, Vortex explasion is the principal factor in this influence.

We note a departure of the models in [12, 14] from the one discussed here, In [12] the flow is assumed to be turbulent, and the liquid inside the core is entrained due to turbulent mixing processes at its boundary. The continuity equation obtained in this case does not have solutions in which $W \sim z$ and $r_{0}$ is independent of $z$. Conversely, according to [12], $r_{0}$ increases with the height $z$, The model proposed in [14] is closer to the present one. It is deduced in [14] that $r_{0}$ does not depend on 2 . For the given stratification of the medium $r_{0}$ depends only on the viscosity, $r_{0} \sim v^{1 / 2}$. The existence of the boundary layer at the bottom surface is practically ignored in [14]. We note that expression (2.21) for $c \rightarrow 0$ coincides with the expression for $r_{0}^{2}$ in [14], correct to within a coefficient of order unity. In both [12] and [14] the height of the vortex does not enter into the parameters of the problem.
3. We now compare the given model with the experimental.

1. The core compaction effect with increasing $A_{\infty}$ or decreasing $Z$ is explained within the context of the model if the heating conditions are fixed. Since $r_{0}$ increases with increasing $A_{\infty}$ or with decreasing $l$, the quantity $A_{\infty} /\left(r_{0} l\right)$ must vary less appreciably than each of the quantities $A_{\infty}, r_{0}, l$ taken separately. This result is consistent with experiment (see Table 1).

We investigate the possibility of using expressions (2.21) and (2.22) to calculate the parameters of vortices. According to (2.21) and (2.22), the only unknown is $\ln \left(r_{0} / r_{1}\right)$ $k$. Inasmuch as $r_{0} / r_{1}$ did not vary more than an order of magnitude in the experiment and the minimum value of $r_{0} / r_{1}$ is of the order of 10 , we can regard the quantity $\ln \left(r_{0} / r_{1}\right)-k$ as constant in the first approximation. To evaluate it we make use of the fact that ro is prac-tically invariant for $f \leqslant 0.9$ rps and $l=12 \mathrm{~cm}$. The latter result implies that the data of the first column in Table 1 corresponds to small $c$. For better correspondence with the experiment we assume for the first column that $c=0.2$.
2. We determine the theoretical values of $W(0), \Delta W$, and $r_{0}$ for $c=0.2$. We set $\rho_{0}=$ $1 \mathrm{~g} / \mathrm{cm}^{3}, \alpha=2 \cdot 10^{-4}\left({ }^{\circ} \mathrm{C}\right)^{-1}, v=0.7 \cdot 10^{-2} \mathrm{~cm}^{2} / \mathrm{sec}, \beta=0.1^{\circ} \mathrm{C} / \mathrm{cm}$, and $\mathrm{b}_{2}=1$. Then from (2.10), (2.14), (2.21), and (2.22) we obtain $W(0) \approx 1.4 \mathrm{~cm} / \mathrm{sec}, \Delta W \approx 0.7 \mathrm{~cm} / \mathrm{sec}$, and $\mathrm{r}_{0} \approx$ 0.7 cm .

The corresponding experimental values are $W(0) \approx 1.6 \mathrm{~cm} / \mathrm{sec}, \Delta W \approx 0.6 \mathrm{~cm} / \mathrm{sec}$, and $r_{0} \approx 0.3 \mathrm{~cm}$ (here $W(0)$ is the maximum value of $w$ at a height of $1 \mathrm{~cm}, \Delta W$ is calculated from the difference between the $w$ maxima at heights of 1 and 3 cm , and $r_{0}$ is taken from the first column of the table).
3. Using expression (2.22), we calculate the ratios of the core radii corresponding to the values of $A_{\infty}$ and $Z$ from columns $2-4$ of the table to the value of $r_{0}$ corresponding to $A_{\infty}$ and $Z$ in column $I$, and of the radius $r_{0}$ corresponding to $A_{\infty}$ and $Z$ from column 3 to $r_{0}$ from columns 2 and 4. We obtain 1.3, 2.4, 1.3, 1.8, and 1.8.

The analogous ratios for the radii $r_{0}$ taken from the table are equal to $1.8,3.7,1.8$, 2, and 2.

Thus, the theoretical results are qualitatively consistent with the experimental, and the calculated values of the vortex parameters according to the model equations agree in order of magnitude with their experimental values.

The author is indebted to B. A. Lugovtsov for a discussion of the results and a number of valuable comments relevant to the theoretical part, as well as to V. F. Tarasov, S. P. Khachaturyan, and V. I. Yakushev for assistance in the construction of the experimental apparatus.

## LITERATURE CITED

1. D. V. Nalivkin, Hurricanes, Gales, and Typhoons [in Russian], Nauka, Leningrad (1969).
2. W. H. Hoecker, "Windspeed and airflow patterns in the Dallas tornado of April 2, 1957," Mon. Weather Rev., 88, No. 5 (1960).
3. R. L. Ives, "Behavior of dust devil," Bull. Am. Meteorol. Soc., 28, No. 4 (1947).
4. N. R. Williams, "Development of dust whirls and similar small-scale vortices," Bull. Am. Meteorol. Soc., 29, No. 3 (1948).
5. P. C. Sinclair, "Some preliminary dust devil measurements," Mon. Weather Rev., 92, No. 8 (1964).
6. S. J. Ying and C. C. Chang, "Exploratory model study of tornado-like vortex dynamics," J. Atm. Sci., 27, No. 1 (1970).
7. C. A. Wan and $\bar{C} . C$. Chang, "Measurement of the velocity field in the simulated tornadolike vortex using a three-dimensional velocity probe," J. Atm. Sci., 29, No. 3 (1972).
8. N. B. Ward, "Exploration of certain features of tornado dynamics using a laboratory model," J. Atm. Sci., 29, No. 6 (1972).
9. T. Maxworthy, "On the structure of concentrated columnar vortices," Astron. Acta, 17, Nos. 4-5 (1972).
10. C. T. Hsu et al., "Mechanism of tornado funnel formation," Phys. Fluids, 19, No. 12 (1976).
11. J. S. Turner, "The constraints imposed on tornado-like vorticesby the top and bottom boundary conditions," J. Fluid Mech., 25, No. 2 (1966).
12. A. Barcilon, "A theoretical and experimental model for a dust devil," J. Atm. Sci., 24, No. 5 (1967).
13. V. A. Vladimirov, "Formation of vortex filaments from upward flows over an evaporating liquid," Dok1. Akad. Nauk SSSR, 236, No. 2 (1977).
14. L. N. Gutman, "Theoretical model of a waterspout," Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 1 (1957).
15. F. A. Schraub, S. J. Kline, H. Henry, P. W. Runstadler, and A. Littell, "Use of hydrogen bubbles for quantitative determination of time-dependent velocity fields in low-speed water flows," Trans. Am. Soc. Mech. Eng., Ser. D, 87, No. 2 (1965).
16. N. Rott and W. S. Lewellen, "Boundary layers in rotating flow," in: Progress in the Aeronautical Sciences, Vol. 7 (1966), p. 111.
17. A. Barcilon, "Vortex decay above a stationary boundary," J. Fluid Mech., 27, No. 1 (1967) .

[^0]:    Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 68-75, January-February, 1980. Original article submitted January 15, 1979.

